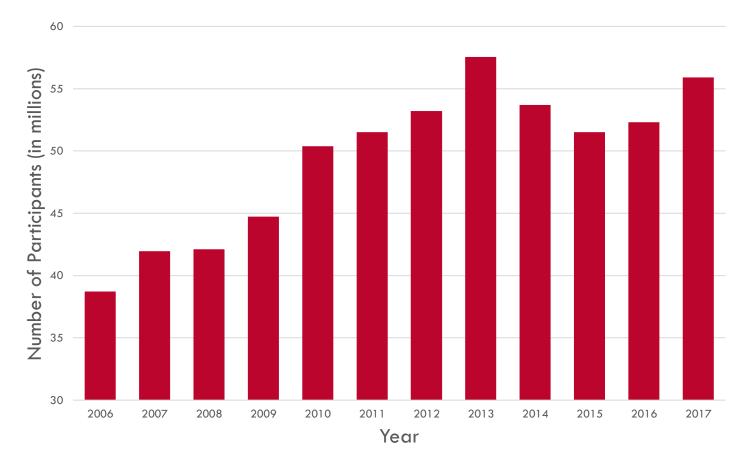
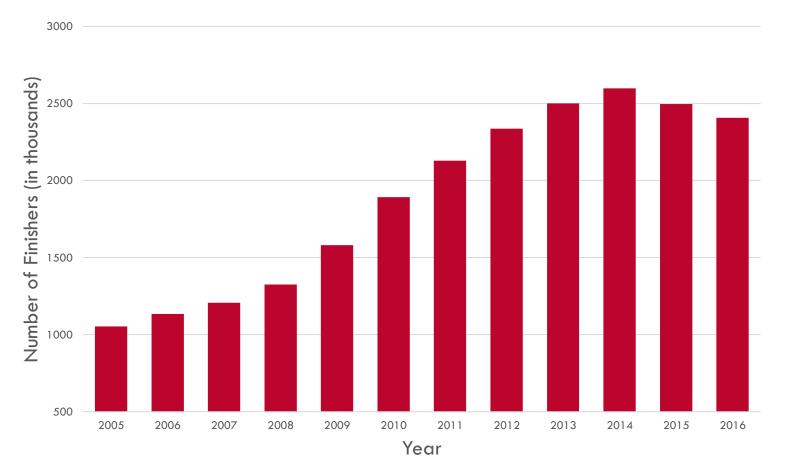
Evaluation and Management Common Running-Related Injuries

Rebecca Dutton, MD Family Medicine Residency Didactics Ju<u>ne 10, 2020</u>



- □ List at least 4 common running-related injuries
- Distinguish between intrinsic and extrinsic risk factors for running-related injuries
- Develop a systematic approach to identify risk factors for running-related injuries and in turn guide recommendations for injury management and prevention

The popularity of running is generally rising

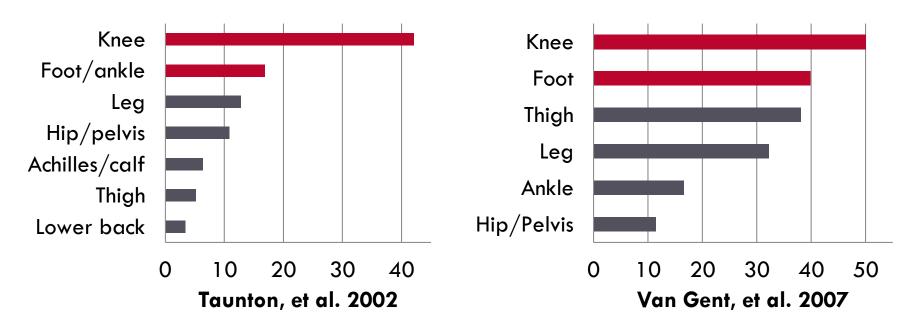

Number of Participants in Running/Jogging and Trail Running in the U.S.

The popularity of running is generally rising

Number of Marathon and Half Marathon Finishers in the U.S.

From: https://www.statista.com/statistics

Running-related injuries (RRI) are common



□ Prevalence **~20-25**%

Up to 43.5% in some populations (Franke, 2019)

Incidence leading up to a marathon as high as 55%

Common sites of RRI

RRIs most commonly affect the lower limbs

Most common RRIs

- Patellofemoral pain
- Iliotibial band syndrome
- Lower extremity stress fracture
- Medial tibial stress syndrome
- Achilles tendinopathy
- Plantar fasciitis
- Patellar tendinopathy
- Hamstring muscle injury/tendinopathy

Patellofemoral pain (PFP)

- Overuse injury characterized by anterior knee pain
 - Insidious onset
 - Worse with compressive forces to PF joint
 - Squatting, prolonged sitting, stair climbing
 - Other symptoms:
 - buckling, stiffness, swelling

- Diagnosis is largely clinical and based on:
 - History and distribution of pain
 - Exclusion of alternative diagnoses
 - Identification of risk factors to further uphold diagnosis

lliotibial band syndrome (ITBS)

Overuse tendonitis of the ITB

Presents with lateral knee pain

- Worse with exercise (repeated knee flexion/extension) or prolonged sitting
- Physical examination

- TTP lateral knee (ITB at lateral femoral condyle or GT)
- Ober's test

Noble's compression test

Stress fractures and Shin splints

Lower extremity stress fracture

Overuse injury yielding discontinuity of cortical bone

Bone	Stress	Stress	Displaced
Strain	Reaction	Fracture	Fracture

- Presents as focal, mechanical pain
 - Point tenderness to palpation
 - Common sites: tibia, metatarsals, navicular, femur, pelvis
- Medial tibial stress syndrome ("shin splints")
 - Overuse injury resulting from bony overload of the posteromedial tibia
 - Likely represents early spectrum bone stress injury

There is <u>no single cause</u> of RRIs

RRIs are multifactorial

Combination of intrinsic and extrinsic factors

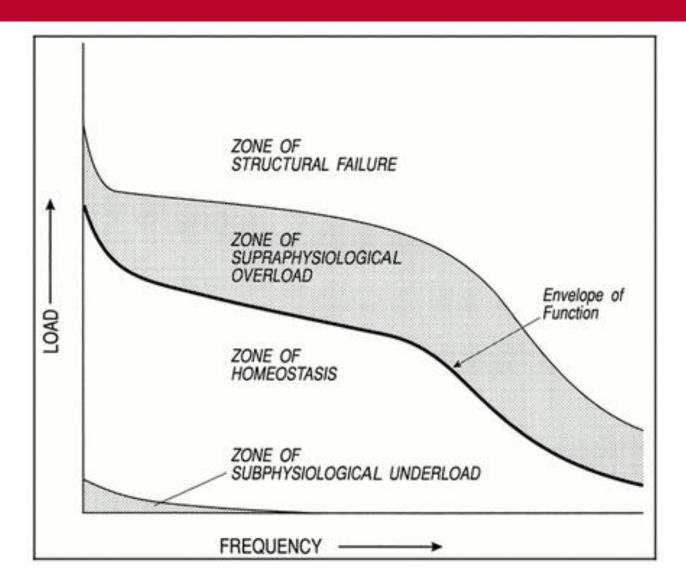
7

U

R

Intrinsic

Traits specific to the individual and the manner in which the body assumes stress


Ex: gender, biomechanics

Extrinsic External circumstances

Ex: training, environment, equipment

Envelope of Function

Risk Factors for RRI

Extrinsic Risk Factors	Intrinsic Risk Factors
Circumstances external to or independent	Traits specific to the individual and the way
of the individual	in which the body assumes stress
History of previous injuries	Lower extremity inflexibility
Training errors	Leg length discrepancy
Poor nutrition	Pes planus or pes cavus
Training surface (eg hard, irregular)	Overpronation
Lifestyle factors (eg smoking, EtOH)	Genu valgus/increased Q-angle
Medications (eg steroids, anitbiotics)	Hip weakness

Possible Protective Factors

Higher education level (college or university) Running < 40 km per week on average Training program (eg incorporation of interval training or resistance training) Proper escalation and maintenance of training volume and intensity

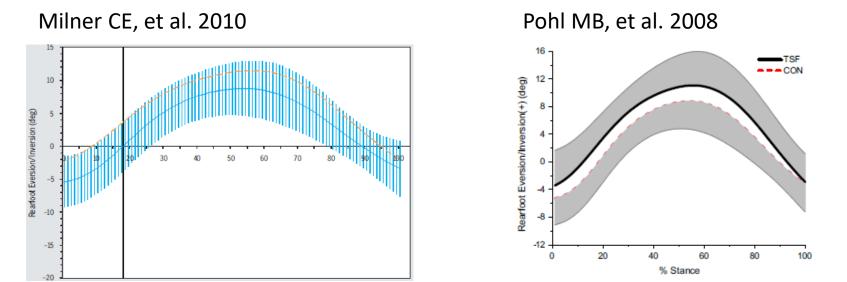
History of prior injury is (most) frequently cited risk factor for RRI

van Gent, 2007	Buist, 2010	van der Worp, 2015
Hx/o prior injury	Increased BMI	Hx/o prior injury
Long training distance	Hx/o prior injury	Use of orthotics
Malisoux, 2015	Sports w/o axial loading	Running on concrete
Increased BMI	van Poppel, 2018	Age
Hx/o prior injury	Hx/o prior injury	Long running distance Older running shoes
	Weekly training volume	

Look for history of *any* musculoskeletal symptoms
 Kluitenberg, 2015

1,696 novice runners in "Start to Run" program

Previous MSK complaints (not necessarily related to sport) associated with development of injury Training errors are a common extrinsic risk factor for RRI


- □ Common training errors
 - Abrupt escalation in exercise (duration, frequency, intensity)
 - Excessive hill work
 - ? foot wear and training surface
 - Inadequate recovery time
- Most runners should have at least 2 rest days/week
 - Ristolainen, 2014
 - Retrospective analysis of 446 elite endurance athletes
 - Evaluated training-related risk factors for injury development
 - Results
 - <2 rest days/week associated w/ 5.2-fold risk of injury</p>
 - >700 training hours per year associated w/ 2.1-fold risk

Rearfoot eversion associated with tibial stress fractures

\square Rearfoot eversion \sim pronation

Retrospective comparisons of rearfoot eversion btw individuals with and without tibial stress fxs

 Excessive rearfoot eversion implicated in other RRIs

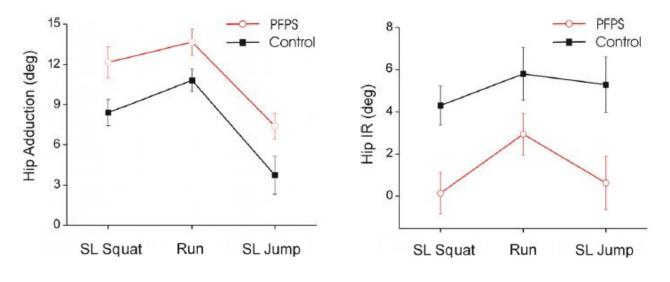
- \square Rearfoot eversion \sim pronation
 - Excessive rearfoot eversion may be associated with PFP
 Differences in foot position appear to be subtle (1-2°)
 - Excessive rearfoot eversion may predict response to foot orthosis (Barton, 2012)
 - 26 individuals with PFP treated with prefab orthosis
 - Greater peak rearfoot eversion was only predictor of significant response to orthosis
 - Compensatory internal rotation of the femur

Hip adduction associated with tibial stress fractures

Hip kinematics

Retrospective comparisons of peak hip adduction between individuals with and without tibial stress fx

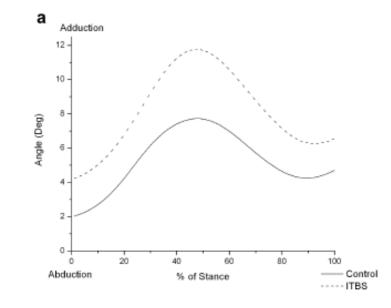
Milner CE, et al. 2010 Pohl MB, et al. 2008 16 Hip Abduction/ Adduction (+) (deg) 10 12 Hip Adduction/Abduction (deg) 8 -5 -10 -15 0 20 80 60 100 % Stance


Stress fx groups had higher peak hip adduction

Excessive hip adduction implicated in PFP

Hip kinematics

- Willson, 2008
 - Comparison of hip kinematics between PFP and controls
 - During single leg squat, running, and single leg jumps


PFP group had increased hip adduction

Excessive hip adduction implicated in ITBS

Hip kinematics

- Noehren, 2007
 - Comparison of hip kinematics in ITBS and controls
 - Prospective analysis

Increased hip adduction associated with development of ITBS

Summary

Common risk factors for RRIs

- Extrinsic factors
 - History of prior injuries
 - Training errors
- Intrinsic factors
 - Overpronation
 - Hip abductor weakness

Identification of risk factors is necessary for successful treatment and prevention of RRI

History

- Inquire regarding prior injuries
- Evaluate training habits (volume/intensity, recovery, running surface, hills)
- □ Intervention
 - Education
 - $\leq 10-15\%$ increase in volume or intensity per week
 - Damsted, 2019
 - 261 runners training for a half marathon (14 wks)
 - 56 (21.5%) developed a RRI
 - In the first 21 days:

Significantly more runners were injured when they increased their weekly distances by >20% (c/t those who increased by < 20%)

- Inquire regarding prior injuries
- Evaluate training habits (volume/intensity, recovery, running surface, hills)
- □ Intervention
 - Education
 - $\blacksquare \le 10-15\%$ increase in volume or intensity per week
 - Ensure adequate rest (at least 2 rest days/wk)
 - Consider training on even, more compliant surfaces
 - Replace shoes ~every 300-400 miles
 - What about shoe type?

$\hfill\square$ Shoe type and RRI

- Pollard, 2018
 - Compared loading rate and impact forces in neutral and maximalist shoes
 - Before and after 5-K run
 - Higher loading rates and impact forces in maximalist shoe (both pre- and post-)
 - Helton, 2019

- Prospective analysis of 1025 cadets
- Shoe stiffness and lower extremity injury
 - Moderate lateral torsional stiffness associated with (49%) lower likelihood of injury
 - Similar risk for minimal and extreme stiffness

Physical examination

Observation (leg length)

Consider scanogram/leg-length x-ray

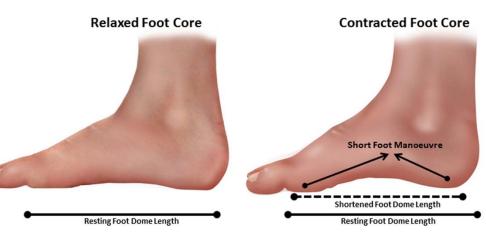
 \Box Intervention = orthoses (shoe inset/lift)

Treat leg length discrepancies of >0.5 inch

- Physical examination
 - Foot position
 - Pes planus

Shoe wear pattern

- □ Intervention
 - Physical therapy



Consider shoe modification or orthoses

□ Foot core exercises

Short-foot exercise

- Mulligan, 2013: 21 healthy subjects
 - 4-wk short-foot exercise program
 - Found reduced arch collapse (ND, AHI)
- Lynn, 2012: 24 healthy subjects
 - Compared 4-wk program of short-foot exercise to towel curl exercise
 - SFE had improved dynamic balance

- Physical examination
 - Static hip strength

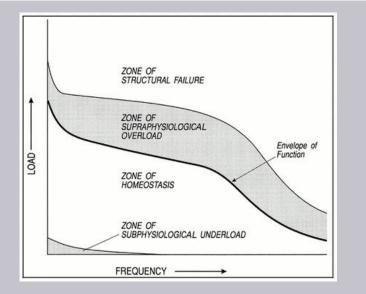
Dynamic hip strength

InterventionPhysical therapy

Bad

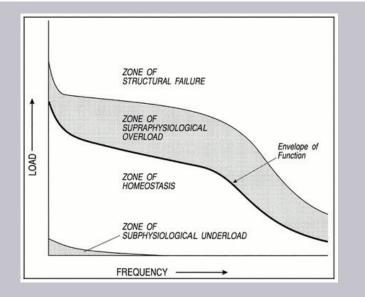
□ Hip strengthening exercises

□ Hip strengthening exercises



□ Hip strengthening exercises

Conclusion


RRI development
 Is multifactorial
 Is often predictable
 May be preventable

- Management and prevention
 - Correction of training errors
 - Address overpronation
 - Focus on hip strength

Conclusion

RRI development
 Is multifactorial
 Is often predictable
 May be preventable

 Further research is necessary to evaluate screening protocols that promote prevention to <u>keep on running!</u>

References

- Buist I, et al. The American Journal of Sports Medicine. 2010; 38(2): 273-280.
- Damsted C, et al. 2019; 49(4): 230-238,
- □ Franke TPC, et al. JOSPT. 2019; 49(7): 518-529
- Garber CE, et al. Medicine and Science in Sports and Exercise. 2011
- □ Helton GL, et al. The American Journal of Sports Medicine. 2019; 47(12): 2853-2862
- □ Kluitenberg B, et al. Scand J Med Sci Sports. 2015: 25: e515–e523
- Lynn SK, et al. Journal of Sport Rehabilitation, 2012, 21, 327-333
- □ Malisoux L, et al. Journal of Science and Medicine in Sport. 2015; 18: 523–528
- □ McKeon PO, Hertel J, Bramble D, et al. Br J Sports Med. 2015;49:290.
- □ Miller TL, Harris JD, Kaeding CC. Sports Medicine. 2013; 43: 665-674
- □ Noehren B, et al. Clin Biomech. 2007; 9: 951-956
- □ Pollard CD, et al. The Orthopaedic Journal of Sports Medicine. 2018; 6(6): 1-5
- Ristolainen L, et al. J Sports Med Phys Fitness. 2014 Feb;54(1):78-87
- Taunton JE, et al. Br J Sports Med. 2002 Apr;36(2):95-101
- □ van der Worp MP, et al. PLoS ONE. 2015; 10(2): e0114937
- □ Van Poppel D, et al. Musculoskelet Sci Pract. 2018; 36: 48-53
- van Gent RN, et al. Br J Sports Med 2007;41:469–480.
- □ Willson JD and Davis IS. Clin Biomech. 2008 Feb;23(2):203-11