Prescribing and Pharmacokinetic Considerations in the Elderly

Melanie A. Dodd, Pharm.D., Ph.C., BCPS
Associate Professor of Pharmacy in Geriatrics
College of Pharmacy
The University of New Mexico
OBJECTIVES

At the conclusion of the lecture the student shall be able to:

- Describe the effects of aging on pharmacokinetic parameters (absorption, distribution, metabolism, and elimination)
- Describe the effects of aging on pharmacodynamic parameters
- Discuss basic principles of prescribing for older patients to avoid adverse drug effects
- Identify potentially inappropriate medications in a given elderly patient based on the Beers’ criteria
Why are geriatric pharmacokinetics important?

- Persons aged 65 and older are prescribed the highest proportion of medications in relation to their percentage of the U.S. population

 - Now, 13% of total population buy 33% of all prescription drugs
 - By 2040, 25% of total population will buy 50% of all prescription drugs
Why are geriatric pharmacokinetics important?

- Increased risk of adverse drug reactions
 - Multiple medications
 - >20% of elderly use 5 or more medications
 - Increased frequency of drug-drug interactions
 - Decreased medication adherence
 - Multiple comorbidities
 - Age-related changes in drug pharmacokinetics
 - Age-related changes in drug pharmacodynamics
The Burden of Injuries from Medications

- ADEs are responsible for 5% to 28% of acute geriatric hospital admissions
 - ADEs occur in 35% of community-dwelling elderly persons
 - ADEs incidence: 26/1000 hospital beds
 - In nursing homes, $1.33 spent on ADEs for every $1.00 spent on medications
RISK FACTORS FOR ADEs

- 6 or more concurrent chronic conditions
- 12 or more doses of drugs / day
- 9 or more medications
- Prior adverse drug reaction
- Low body weight or body mass index
- Age 85 or older
- Estimated CrCl < 50 mL / min
Principles of prescribing for older patients: The Basics

• Start with a low dose

• Titrate upward slowly, as tolerated by the patient

• Avoid starting 2 drugs at the same time
Before Starting a New Medication, Ask:

- Is this medication necessary?
- What are the therapeutic end points?
- Do the benefits outweigh the risks?
- Is it used to treat effects of another drug?
- Could 1 drug be used to treat 2 conditions?
- Could it interact with diseases, other drugs?
- Does patient know what it’s for, how to take it, and what ADEs to look for?
PHARMACOKINETICS

Absorption

Distribution

Metabolism

Elimination
Aging and Absorption

- Clinical significance is not well characterized
 - Most drugs absorbed through passive diffusion in the proximal small bowel

- Exception: levodopa
 - Threefold increase in bioavailability due to reduced activity dopa-decarboxylase in the stomach wall
Absorption

- **Alterations in GI function**
 - **Decreased gastric parietal cell function**
 - Decrease in secretion of hydrochloric acid
 - **Increase in gastric pH**
 - Ex: tetracycline, Fe, ketoconazole

- **Decreased rate of gastric emptying**
 - Ex: anticholinergics, opiates, Fe, anticonvulsants

- **Drug-drug interactions**
 - Divalent cations (calcium, magnesium, iron) and fluoroquinolones (e.g., ciprofloxacin)
Absorption

- Topical absorption (patches, creams, ointments, etc.)
 - Thinning and reduction of absorptive surface
 - Skin atrophy and decreased fat content
 » Reduction in vascular network and risk of contact dermatitis
Effects of aging on volume of distribution (Vd)

- Depends mostly on physiochemical properties of individual medications

\[t_{1/2} = \frac{0.693 \times Vd}{Cl} \]
Distribution

- ▼ body water (10-15%) → lower Vd for hydrophilic drugs
 - Ex: warfarin, digoxin, lithium, cimetidine, APAP, ETOH

- ▼ lean body mass → lower Vd for drugs that bind to muscle

- ▲ fat stores → higher Vd for lipophilic drugs
 - Ex: diazepam, lidocaine, TCAs, propranolol
Distribution
Protein Binding

- **Decreased serum albumin**
 - 10 to 20% in hospitalized or poorly nourished pt.
 - Increase in unbound fraction of highly protein bound acidic drugs
 - Monitor drug levels—free phenytoin level with low albumin
 - Ex: warfarin, phenytoin, naproxen

- **Increased α-1 acid glycoprotein**
 - Decrease in unbound fraction of highly protein bound basic drugs
 - Ex: lidocaine, propranolol, imipramine
The liver is the most common site of drug metabolism

Metabolic clearance of a drug by the liver may be reduced because …

Decrease in liver blood flow
- 40 to 45% with aging, related to cardiac function
- Increase in bioavailability
- Decreased 1st pass effect = more parent drug
 - Reduce initial dose, then titrate

Decrease in liver size
- 20 to 50% decrease in absolute weight up to age 80
- Reduction of total amount of metabolizing enzymes
- Leads to decrease in Cl and increase in $t_{1/2}$
- Start with lower dosage
- Caution with toxic metabolites
 - Ex: meperidine and propoxyphene
Other Factors that Affect Drug Metabolism

- Gender
- Hepatic congestion from heart failure
- Smoking
Elimination

- Most drugs exit body via kidney
- Reduced elimination \rightarrow drug accumulation and toxicity
- Aging and common geriatric disorders can impair kidney function
The Effects of Aging on the Kidney

- ↓ kidney size
- ↓ renal blood flow
 - ~1%/year after age 50
- ↓ number of functioning nephrons
- ↓ renal tubular secretion

Result: Lower glomerular filtration rate

- ~35% in healthy individuals between ages 20 and 90
- Accumulation → increased risk of toxicity
 - Ex: lithium, aminoglycosides, captopril, NSAIDs
Serum Creatinine does NOT reflect Creatinine Clearance

- ↓ lean body mass → lower creatinine production
 and
- ↓ glomerular filtration rate (GFR)

Result: In older persons, serum creatinine stays in normal range, masking change in creatinine clearance (CrCl)
How to Calculate Creatinine Clearance

• **Measure:**
 ✓ Time-consuming to be accurate
 ✓ Requires 24-h urine collection
 ✓ 8-h collection may be accurate but not widely accepted

• **Estimate:**
 ✓ Cockroft and Gault equation
 ✓ MDRD
Cockroft and Gault Equation

(Ideal weight in kg) \((140 - \text{age}) \)
\[\frac{\text{serum creatinine in mg/dL}}{72} \]
\[\times \ (0.85 \text{ if female}) \]
Pharmacodynamics

Definition

• Time course and intensity of pharmacologic effect of a drug

  Impairment varies considerably from person to person

  All organ systems are affected

  Kidneys, liver, GI, CNS, CV, GU
Altered Pharmacodynamic Mechanisms

- Change in receptor numbers
- Change in receptor affinity
- Postreceptor alterations
- Age-related impairment of homeostatic mechanisms
CNS

- Changes are significant, yet idiosyncratic
 - Decrease in weight and volume of brain
 - Alterations in cognition

- Increased sensitivity to medications
 - Ex: benzodiazepines, opioids, anticholinergics, NSAIDs
CNS

- Cholinergic blockade results in
 - Sedation, confusion, and reduced ability to recall
 - Ex: TCAs, diphenhydramine, antispasmodics, antipsychotics

- Benzodiazepines can cause severe CNS depression
 - Leads to falls and hip fractures
 - Use caution and small dosages
Cardiovascular

- Decreased baroreceptor responsiveness
 - Results in orthostatic hypotension
 - Ex: Antihypertensives—use caution and counseling
GU

- Urinary incontinence
 - 15 to 30% of community-dwellers
 - 50% of nursing home residents
 - Enlarged prostate, urine retention
 - Ex: anticholinergics
Inappropriate Medication Use in Older Adults (Beers Criteria update)

- 48 medications or classes to avoid in older adults
- 20 diseases/conditions and medications to avoid in older adults with these diseases
- “Medications to be used with caution in the elderly: a statewide clinical recommendation on potentially inappropriate medications”
Inappropriate Drug Therapy based on Beers’ Criteria

<table>
<thead>
<tr>
<th>Authors</th>
<th>Setting</th>
<th>Prevalence of Inappropriate Prescribing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goulding MR 2004</td>
<td>Ambulatory care visits</td>
<td>7.8% of visits</td>
</tr>
<tr>
<td>Zhan et al. 2001</td>
<td>Community dwelling elderly</td>
<td>21.3% of patients</td>
</tr>
<tr>
<td>Simon SR, et al. 2005</td>
<td>Elderly in managed care</td>
<td>28.8% of patients</td>
</tr>
<tr>
<td>Golden et al. 1999</td>
<td>Nursing home-eligible</td>
<td>39.7% of patients</td>
</tr>
<tr>
<td>NM Medicare Advantage plans 2009</td>
<td>New Mexico Medicare patients</td>
<td>21.5% of patients</td>
</tr>
</tbody>
</table>
Beers’ Criteria: Independent of Diagnosis
Analgesics

- Meperidine (long t$_{1/2}$ metabolite, CNS)
- Non-steroidal anti-inflammatory drugs
 - Indomethacin (CNS)
 - Ketorolac-immediate and long-term use (GI bleeds)*
 - Non-COX selective NSAIDs, longer t$_{1/2}$-long-term use (GI bleeds, renal failure)*
- Propoxyphene
- Pentazocine (CNS)
Beers’ Criteria: Independent of Diagnosis
Psychiatric

- **Antidepressants**
 - Amitriptyline/doxepin (anticholinergic)
 - Daily fluoxetine (CNS)*

- **Anxiolytics**
 - Long-acting benzodiazepines-chlordiazepoxide, flurazepam (sedation/fractures)
 - Doses of short-acting benzodiazepines
 - Meprobamate (addiction/sedation)

- **Antipsychotics**
 - Thioridazine (CNS/EPS)*
 - Mesoridazine (CNS/EPS)*
Beers’ Criteria: Independent of Diagnosis
Cardiovascular

- Ticlopidine (no better than aspirin)
- Disopyramide (negative inotrope/anticholinergic)
- Amiodarone (QT interval/torsades de pointes)*
- Methyldopa (bradycardia/depression)
- Clonidine (CNS/orthostatic hypotension)*
- Doxazosin (hypotension/dry mouth)*
- Short-acting nifedipine (hypotension/constipation)*
- Ethacrynic acid (HTN, fluid imbalances)*
Beers’ Criteria: Independent of Diagnosis

- **Antihistamines (anticholinergic)**
 - Diphenhydramine (confusion/sedation)
 - Chlorpheniramine
 - Promethazine
 - Hydroxyzine

- **Stimulant laxatives, long term use: e.g., bisacodyl (bowel dysfunction)**

- **Cimetidine (CNS, confusion)** *

- **Chlorpropamid (hypoglycemia/SIADH)**
Beers Criteria
Considering Diagnosis

- Heart failure-disopyramide (negative inotropic effect)
- Gastric or duodenal ulcers-NSAIDs and aspirin >325 mg (exacerbate existing ulcers or produce new ulcers)
- Epilepsy-clozapine, chlorpromazine (may lower seizure threshold)
- Insomnia-decongestants, theophylline, methylphenidate (CNS stimulants)
Beers Criteria
Considering Diagnosis

- Depression-long-term benzodiazepines (exacerbate depression)*
- Syncope or falls-TCAs and short to intermed acting benzodiazepines (may produce syncope/additional falls)*
- Chronic constipation-CCBs, anticholinergics, TCAs
Alternatives to Beers criteria

STOPP and START Criteria

- Screening Tool of Older Persons’ Prescriptions (STOPP)
- Screening Tool to Alert doctors to Right Treatment (START)

Conclusions

- Age alters pharmacokinetics (drug absorption, distribution, metabolism, and elimination)
- Age alters pharmacodynamics
- ADEs are common among older patients
- Successful drug therapy means:
 - Choosing the correct dosage of the correct drug for the condition and individual patient
 - Monitoring the therapy

