Antenatal Testing—A Reevaluation

Executive Summary of a Eunice Kennedy Shriver National Institute of Child Health and Human Development Workshop

Caroline Signore, MD, MPH, Roger K. Freeman, MD, and Catherine Y. Spong, MD

In August 2007, the Eunice Kennedy Shriver National Institute of Child Health and Human Development, the National Institutes of Health Office of Rare Diseases, the American College of Obstetricians and Gynecologists, and the American Academy of Pediatrics cosponsored a 2-day workshop to reassess the body of evidence supporting antepartum assessment of fetal well-being, identify key gaps in the evidence, and formulate recommendations for further research. Participants included experts in obstetrics and fetal physiology and representatives from relevant stakeholder groups and organizations. This article is a summary of the discussions at the workshop, including synopses of oral presentations on the epidemiology of stillbirth and fetal neurological injury, fetal physiology, techniques for antenatal monitoring, and maternal and fetal indications for monitoring. Finally, a synthesis of recommendations for further research compiled from three breakout workgroups is presented.

Since the development of technologies for electronic fetal heart rate (FHR) monitoring in the 1970s, and with the increasing sophistication of ultrasound and Doppler imaging, an array of techniques for antenatal assessment of fetal well-being have been introduced into clinical practice. The primary goal of antenatal testing is to identify fetuses at risk for intrauterine injury or death so that these adverse outcomes can be prevented. Despite widespread use of these technologies, however, there is limited evidence to guide their appropriate application or to demonstrate their effectiveness at improving perinatal outcomes.

The Eunice Kennedy Shriver National Institute of Child Health and Human Development, along with cosponsors the National Institutes of Health Office of Rare Diseases, the American College of Obstetricians and Gynecologists (ACOG), and the American Academy of Pediatrics, held a workshop on antepartum fetal monitoring from August 27 to August 28, 2007, to assess critically the existing evidence and identify key gaps in knowledge. Experts were invited to summarize the current state of the art in antenatal testing methodology and indications and to identify pressing research needs. Evidence for a number of important issues was reviewed, including the extent to which antenatal testing decreases fetal death and long-term neurological disability and how antenatal testing affects gestational age at delivery and mode of delivery. This article is an executive summary of the proceedings of the workshop. Detailed articles by the individual attendees, based on their presentations, were published collectively in a recent issue of Seminars in Perinatology.

The ultimate goal of antepartum fetal monitoring is to improve perinatal outcome, specifically by decreasing stillbirth and longer term neurologic impairments such as injury to the fetal central nervous system (CNS). The rate of stillbirth is 6.2/1,000 live births and fetal deaths in the United States, accounting for more than 55% of perinatal mortality.
to the fetal CNS is expressed after delivery in a number of clinical entities and syndromes, with cerebral palsy being the most common. In contrast to stillbirth, where rates have declined, rates of cerebral palsy have been increasing, primarily owing to increased survival of low birth weight and premature neonates. It is widely held that 90% or more of neonatal encephalopathy cases arise before the onset of labor, but most antenatal causes of CNS injury are not detected during routine prenatal care.

Both stillbirth and cerebral palsy have been associated with extremes of maternal age and parity, maternal obesity, African-American race, prenatal smoking, maternal medical disease, use of assisted reproductive technologies, previously affected pregnancy, fetal anomalies, multiple pregnancy, fetal growth restriction, and male fetal sex. These similarities in risk factors suggest that fetal CNS injury and stillbirth may share a common pathway. Some authors have postulated that observed trends in decreasing stillbirth rates may be contributing to increasing cerebral palsy rates, ie, neurologically injured fetuses that previously would have succumbed to in utero death now survive with permanent neurological impairment.

Fetal hypoxia and acidosis represent the final common pathways to fetal injury and death in many high-risk pregnancies. The basis for antepartum testing relies on the premise that the fetus whose oxygenation in utero is challenged will respond with a series of detectable physiologic adaptive or decompensatory signs as hypoxemia or frank metabolic acidemia develop. In one adaptive response to hypoxemia, blood flow is redirected to the brain, heart, and adrenals, with subsequent decreased renal perfusion and fetal urine production, which may result in decreased amniotic fluid volume. Fetal movement is an indirect indicator of CNS integrity and function. During acute hypoxemia, fetal movements decrease as the fetus attempts to conserve energy. Loss of fetal movement raises concern for ongoing CNS hypoxia and injury. A chemoreceptor response to hypoxemia leads to vagally mediated reflex slowing of the FHR, which may appear clinically as late decelerations associated with uterine contractions.

A number of investigators have described sequences of measurable changes in fetal blood flow and biophysical parameters that occur as placental insufficiency worsens and fetal hypoxemia and acidemia develop. Although the precise sequences of observed characteristics differ slightly in these reports, a general pattern of fetal response to intrauterine challenge emerges (Fig. 1). Loss of FHR reactivity and abnormal blood flow in the umbilical artery are often the earliest signs of fetal compromise. Sequen-
a 73% reduction in avoidable stillbirths (relative risk 0.27, 95% confidence interval [CI] 0.08–0.93). However, a subsequent large (N=68,654) international trial showed no difference in potentially avoidable late fetal deaths between women who were instructed to count routinely and women in the control group (difference in mean rate -0.06/1,000, 95% CI -0.76 to 0.64).\(^{13}\) The results of these trials are difficult to compare because of methodologic differences, particularly in how women were instructed to count movements and how decreased fetal movement was defined. Although the “count to 10” method\(^ {14}\) frequently is employed, it is not clear from the existing evidence whether there is a specific fetal movement threshold or “alarm limit” below which fetal risk is increased. Some authors suggest that a more important predictor may be an overall maternal sense that fetal activity is reduced and that any such report warrants further evaluation.\(^ {15}\) A recent systematic review\(^ {16}\) concluded that there is insufficient evidence to recommend routine fetal movement counting to prevent stillbirth.

Cardiotocographic Techniques: Contraction Stress Test, Nonstress Test

(Table 1) The contraction stress test (CST) is based on the premise that uterine contractions transiently restrict oxygen delivery to the fetus and that a hypoxic fetus will demonstrate recurrent late decelerations. The rate of antepartum stillbirth within 1 week of a negative CST (ie, the false-negative rate) is 0.04%\(^ {17}\); however, up to 30% of positive tests have been reported to be false-positive (that is, patients tolerate labor without FHR changes indicating intervention).\(^ {18}\) Drawbacks to the CST include the need to stimulate contractions and the fact that inducing contractions is contraindicated in a number of conditions (eg, placenta previa). A less intensive method, the nonstress test (NST), grew from observations that the presence of two or more FHR accelerations during a CST most often predicted a negative CST and that absence of accelerations on a baseline FHR tracing was associated with adverse perinatal outcomes.\(^ {19}\) The NST false-negative rate is about 0.3%.\(^ {20}\) Nonreactive NSTs have about a 55% false-positive rate (ie, a backup test is normal).\(^ {21}\) NSTs should be performed at least twice weekly.\(^ {22}\)

Ultrasoundographic Assessments: Amniotic Fluid Volume, Biophysical Profile And Modified Biophysical Profile

(Table 1) Amniotic fluid volume commonly is estimated by either the maximum vertical pocket or the four-quadrant amniotic fluid index (AFI).\(^ {23,24}\) By dye dilution studies, both AFI less than 5 cm and maximum vertical pocket less than 2 cm had poor sensitivity for detecting true oligohydramnios (sensitivity 10% and 3%, respectively). Similarly, AFI more than 20 cm and maximum vertical pocket more than 8 cm were poor predictors of true hydramnios (sensitivity 29% for both).\(^ {25}\) The biophysical profile (BPP) combines the ultrasonographic estimation of amniotic fluid volume and assessments of fetal breathing, body, and reflex/tone/flexion-extension movements with the NST.\(^ {26}\) This test is felt to assess indicators of both acute (NST, breathing, body movement) and chronic (amniotic fluid volume) hypoxia, and the BPP score is correlated linearly with fetal pH.\(^ {27}\) The risk of fetal death within 1 week of a normal biophysical assessment is 1 in 1,300.\(^ {28}\) The modified BPP relies on the NST as a measure of acute oxygenation and the AFI as a measure of longer term oxygenation.\(^ {29}\) In a large observational study, the false-negative rate was 0.8/1,000, but 60% of abnormal modified BPPs are false-positive.\(^ {30}\)

Doppler Velocimetry

Measurement of blood flow velocities in the maternal and fetal vessels gives information about uteroplacental blood flow and fetal responses to physiologic challenges. Of all the antenatal assessment methods, Doppler-based tests have been evaluated most rigorously in randomized trials. The information derived from velocity waveforms in different vessels varies according to the specific vessel assessed (see Table 2).

Uterine Artery

Failure of adequate trophoblast invasion and remodeling of maternal spiral arteries is characterized by persistent high-pressure uterine circulation and increased impedance to uterine artery blood flow. Elevated resistance indices or persistent uterine artery waveform notching at 22–24 weeks of gestation indicate reduced blood flow in the maternal compartment of the placenta and have been associated with future preeclampsia, fetal growth restriction, and perinatal death.\(^ {31}\) A number of investigators have explored the use of uterine artery Doppler for third-trimester fetal assessment among women with complicated pregnancies\(^ {32,33}\) but its role in this setting has not been defined clearly.

Umbilical Artery

Umbilical artery flow velocity waveforms of normally growing fetuses are characterized by high-velocity diastolic flow, whereas, in growth-restricted fetuses, umbilical artery diastolic flow is diminished, absent,
This progressive reduction of umbilical artery diastolic flow is associated with worsening destruction of placental villous vasculature. In the growth-restricted fetus, absent or reversed end diastolic flow is associated with fetal hypoxia and increased perinatal morbidity and mortality. In a systematic review of 11 randomized trials enrolling approximately 7,000 high-risk patients, the use of Doppler ultrasonography was associated with a trend toward decreased perinatal mortality (odds ratio...
Umbilical artery Doppler assessments are considered most useful for monitoring early-onset growth restriction due to uteroplacental insufficiency. Several randomized trials have demonstrated that routine umbilical artery Doppler screening of all pregnancies does not improve perinatal outcomes. Current ACOG practice guidelines support the use of umbilical artery Doppler assessments only in the management of suspected intrauterine growth restriction, stipulating that decisions regarding the timing of delivery should be based on umbilical artery Doppler results in combination with other tests of fetal well-being.

Middle Cerebral Artery
In the compromised fetus, systemic blood flow is redistributed from the periphery to the brain. Doppler measurement of flow velocity in the fetal middle cerebral artery can detect this “brain-sparing effect” and has gained attention recently as an assessment tool. The limited data available currently are mixed.

Fetal Veins (Umbilical Vein, Inferior Vena Cava, Ductus Venosus)
Blood flow in the umbilical vein is continuous in normal pregnancies after 15 weeks of gestation. Pathological states, such as fetal growth restriction, may be associated with pulsatile flow in the umbilical vein, which is a reflection of cardiac dysfunction against increased afterload. The ductus venosus regulates oxygenated blood in the fetus and is resistant to alterations in flow except in the most severely growth-restricted fetuses. Recent evidence suggests that Doppler evaluation of fetal veins combined with arterial assessments is useful for predicting outcomes in growth-restricted fetuses.

EMERGING METHODS OF FETAL ASSESSMENT
Fetal Physiology Assessment
As the fetal CNS matures, there are distinctive alterations in fetal physiological and behavioral parameters, such as heart rate patterns, motor activity, and sleep–wake cycles. One important developmental feature is the increased coupling between fetal movement and FHR that normally occurs with advancing gestational age and reflects maturation of the parasympathetic and sympathetic components of the fetal autonomic nervous system. The use of a fetal actocardiograph, which electronically records FHR and fetal movement, and novel analytic techniques allow computation of time-dependent cross-correlation coefficients between FHR and fetal movement. Studies have suggested that high levels of maternal stress, preterm birth, and other pregnancy complications are associated with alterations in fetal movement/FHR coupling as well as FHR reactivity. Potential impairment or maturational delay of the fetal autonomic nervous system from a variety of insults or exposures may be detected by monitoring movement-related patterns of FHR in combination with fetal movement/FHR coupling measures.

Fetal Magnetoencephalography
Fetal magnetoencephalography aims for direct assessment of fetal cortical and brainstem function. A specialized apparatus incorporating an array of ultra-sensitive magnetic-field detectors allows noninvasive, direct, continuous recording of fetal electrocortical signals and can record fetal brain activity in response to auditory and visual stimuli applied to the maternal abdomen. This technology may contribute to future clinically important assessments of the CNS status of the fetus.

INDICATIONS FOR ANTENATAL TESTING
Diabetes
Historically, insulin-dependent diabetes has been a major contributor to perinatal mortality; however, owing to both improved treatment and antepartum monitoring, the stillbirth rate in pregnancies complicated by diabetes now is equivalent to or lower than that in uncomplicated pregnancies. Poorly controlled maternal diabetes is associated with increased perinatal mortality, largely related to congenital anomalies and indicated preterm deliveries but also to sudden, unexplained fetal death. Although observational studies have described the use of the NST,
CST,52 and BPP53 in the management of the diabetic pregnancy, no method(s) has been assessed in well-designed clinical trials and it is not clear which method, if any, is superior (Table 3). There is no evidence supporting routine antepartum fetal assessment in diet-controlled gestational diabetes.54

Hypertensive Disorders
Maternal hypertension in pregnancy, whether chronic, pregnancy-induced, or a combination, is a risk factor for perinatal death and is a common indication for antenatal testing (Table 3).20 There are insufficient data to recommend one testing modality over another or to make conclusions about when testing should begin and how frequently it should be repeated. Some authorities hold that mild to moderate chronic hypertension in the absence of growth restriction or superimposed preeclampsia is not an indication for routine fetal surveillance,55 and a recent systematic review concluded that benefits and harms of routine antenatal assessment in women with chronic hypertension cannot be determined with the current evidence.56 No randomized trials have assessed the best method for antenatal testing in the preeclamptic patient for whom delayed delivery is desired. The National High Blood Pressure Education Program Working Group on High Blood Pressure in Pregnancy has recommended daily fetal-movement assessment and weekly NSTs or BPPs or both for patients with mild preeclampsia before term.55 If fetal growth restriction or decreased amniotic fluid volume are present, testing is recommended twice weekly. Daily fetal cardiotocographic or ultrasound surveillance may be useful in the conservative management of severe preterm preeclampsia.57

Fetal Growth Restriction
Fetal growth restriction is a well-recognized risk factor for fetal death. Abnormalities in Doppler velocimetry indices may help distinguish between fetal growth restriction due to placental insufficiency, in which impedance indices tend to be increased, and growth restriction from other causes (eg, congenital infection) or constitutional smallness, which are less frequently associated with increased impedance of blood flow.58,59 There are no data from randomized trials indicating the optimal mode and frequency of antenatal testing of the fetus with growth restriction (Table 3). Given the limitations in predictive value, timing delivery based on results of antenatal testing in preterm fetal growth restriction presents a particular problem because the risks of fetal loss must be balanced against the risks of iatrogenic prematurity.

Multiple Pregnancy
The greater prevalence of maternal risk factors (eg, advanced maternal age, preterm labor, preeclampsia) and fetal risk factors (eg, abnormal growth, abnormal placentation, congenital anomalies) contributes to higher perinatal mortality rates in multiple gestations than in singletons. Population-based evidence indicates that the lowest risk for intrauterine death in multiple gestations occurs at 37–38 weeks.60 Chorionicity is an important consideration in the assessment of risk, with higher rates of adverse outcomes among monochorionic twins. Limited data specific to twin pregnancy suggest that weekly simultaneous NSTs,60 BPPs,61 modified BPPs, and umbilical artery Doppler studies, alone or in combination,62 may be of benefit in predicting outcomes in twin pregnancies (Table 3). There are scant data to indicate the gestational age at which testing should start; some suggest that fetal surveillance among diamniotic-dichorionic twins with concordant growth may not be needed before 38 weeks. There is insufficient evidence to support specific recommendations for any antenatal testing strategy in triplets and higher-order multiples.

Amniotic Fluid Abnormalities
Abnormalities of amniotic fluid volume long have been viewed as risk factors for poor perinatal outcomes,63,64 although this concept has been called into question recently.65 Hydramnios (AFI more than 24 cm or maximum vertical pocket more than 8 cm) and oligohydramnios (AFI less than 5 cm or maximum vertical pocket less than 2 cm) each frequently coexist with other maternal or fetal problems such as congenital anomalies, diabetes, hypertension, postterm pregnancy, and fetal growth restriction. There is some controversy about whether isolated oligohydramnios66 or hydramnios67 near term is associated with adverse pregnancy outcomes. In a large, retrospective study, approximately 40% of repeat assessments of oligohydramnios (AFI 5 cm or less) revealed AFI more than 5 cm within 3 to 4 days.68 There are few data on which to base recommendations for antenatal testing in pregnancies with abnormalities of amniotic fluid volume (Table 3).

Preterm premature rupture of membranes is associated with oligohydramnios and subclinical intrauterine infection. The goal of antenatal testing in this setting is early recognition of chorioamnionitis necessitating delivery. Most experts recommend daily antenatal testing in patients with preterm premature rupture of membranes, alone or in combination with other maternal or fetal problems such as congenital anomalies, diabetes, hypertension, postterm pregnancy, and fetal growth restriction. There is some controversy about whether isolated oligohydramnios66 or hydramnios67 near term is associated with adverse pregnancy outcomes. In a large, retrospective study, approximately 40% of repeat assessments of oligohydramnios (AFI 5 cm or less) revealed AFI more than 5 cm within 3 to 4 days.68 There are few data on which to base recommendations for antenatal testing in pregnancies with abnormalities of amniotic fluid volume (Table 3).

Preterm premature rupture of membranes is associated with oligohydramnios and subclinical intrauterine infection. The goal of antenatal testing in this setting is early recognition of chorioamnionitis necessitating delivery. Most experts recommend daily antenatal testing in patients with preterm premature
Table 3. Maternal Risk Factors and Estimated Risk of Stillbirth and Reported Strategies for Antepartum Fetal Surveillance

<table>
<thead>
<tr>
<th>Condition</th>
<th>Prevalence (%)</th>
<th>Estimated Rate of Stillbirth</th>
<th>Odds Ratio</th>
<th>GA to Initiate Testing</th>
<th>Testing Mode and Schedule</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>All pregnancies</td>
<td>-</td>
<td>6.4/1,000</td>
<td>1.0</td>
<td>-</td>
<td>-</td>
<td>109</td>
</tr>
<tr>
<td>Low-risk pregnancies</td>
<td>80</td>
<td>4.0–5.5/1,000</td>
<td>0.86</td>
<td>-</td>
<td>-</td>
<td>109</td>
</tr>
<tr>
<td>Diabetes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treated with diet (A1)</td>
<td>2.5–5</td>
<td>6–10/1,000</td>
<td>1.2–2.2</td>
<td>Not indicated</td>
<td>CST/wk, midweek NST</td>
<td>54, 109</td>
</tr>
<tr>
<td>Treated with insulin</td>
<td>2.4</td>
<td>6–35/1,000</td>
<td>1.7–7.0</td>
<td>A2, B, C, D without HTN, renal disease, or FGR: 32 wk</td>
<td></td>
<td>52, 109</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>32 wk</td>
<td>NST or BPP 2×/wk</td>
<td>110</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>34 wk</td>
<td>NST 2×/wk + AFI/wk</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R, F: 26 wk</td>
<td>CST/wk, midweek NST</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Any class with HTN, renal disease, FGR: 26 wk</td>
<td>CST/wk, midweek NST</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>28 wk</td>
<td>NST or BPP 2×/wk</td>
<td>110</td>
</tr>
<tr>
<td>Hypertensive disorder</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chronic hypertension</td>
<td>6–10</td>
<td>6–25/1,000</td>
<td>1.5–2.7</td>
<td>26 wk</td>
<td>NST, AFI 2×/wk</td>
<td>109, 111</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>33 wk</td>
<td>MBPP 2×/wk</td>
<td>29, 112</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>With SLE or FGR or DM or PIH: 26 wk</td>
<td>NST, AFI 2×/wk</td>
<td>112, 113</td>
</tr>
<tr>
<td>Pregnancy-induced hypertension</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mild</td>
<td>5.8–7.7</td>
<td>9–51/1,000</td>
<td>1.2–4.0</td>
<td>At diagnosis</td>
<td>MBPP 2×/wk</td>
<td>29, 30, 109</td>
</tr>
<tr>
<td>Severe</td>
<td>1.3–3.3</td>
<td>12–29/1,000</td>
<td>1.8–4.4</td>
<td>At diagnosis</td>
<td>NST/day with BPP if nonreactive; AFI 2×/wk</td>
<td>57, 109</td>
</tr>
<tr>
<td>Growth-restricted fetus</td>
<td>2.5–10</td>
<td>10–47/1,000</td>
<td>7–11.8</td>
<td>Suspected: at diagnosis</td>
<td>NST, AFI/wk</td>
<td>113–115</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Confirmed</td>
<td>UAD 1–2×/wk</td>
<td>18, 116</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MBPP 2×/wk</td>
<td>29, 30</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>UAD 1–2×/wk</td>
<td>18, 116</td>
</tr>
<tr>
<td>Multiple gestation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Twins</td>
<td>2–3.5</td>
<td>12/1,000</td>
<td>1.0–2.8</td>
<td>Concordant growth: 32 wk</td>
<td>NST, AFI/wk</td>
<td>109, 113</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Discordant growth: at diagnosis</td>
<td>MBPP 2×/wk</td>
<td>30</td>
</tr>
<tr>
<td>Triplets</td>
<td>0.14</td>
<td>34/1,000</td>
<td>2.8–3.7</td>
<td>28 wk</td>
<td>BPP, 2×/wk</td>
<td>109, 117</td>
</tr>
<tr>
<td>Oligohydramnios</td>
<td>2</td>
<td>14/1,000</td>
<td>4.5</td>
<td>At diagnosis</td>
<td>NST, AFI 2×/wk</td>
<td>113, 118</td>
</tr>
<tr>
<td>Preterm PROM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NST/d</td>
<td>69, 119</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BPP/d</td>
<td>108, 120</td>
</tr>
<tr>
<td>Postterm pregnancy (compared with 40 wk)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41 wk</td>
<td>9</td>
<td>1.6/1,000</td>
<td>1.5</td>
<td>41 wk</td>
<td>BPP 2×/wk</td>
<td>72, 121, 122</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>41 wk</td>
<td>MBPP/wk</td>
<td>30</td>
</tr>
<tr>
<td>42 wk or more</td>
<td>5</td>
<td>2–3.5/1,000</td>
<td>1.8–2.9</td>
<td>42 wk</td>
<td>MBPP 2×/wk</td>
<td>30, 72, 121</td>
</tr>
<tr>
<td>Previous stillbirth</td>
<td>0.5–1.0</td>
<td>9–20/1,000</td>
<td>1.4–3.2</td>
<td>32 wk</td>
<td>MBPP 2×/wk or BPP/wk or CST/wk MBPP/wk</td>
<td>29, 82, 109, 120</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>34 wk or 1 wk prior to previous stillbirth</td>
<td>MBPP/wk</td>
<td>30</td>
</tr>
<tr>
<td>Decreased fetal movement</td>
<td>4–15</td>
<td>13/1,000</td>
<td>2.5–5.6</td>
<td>At diagnosis</td>
<td>MBPP</td>
<td>15, 29, 30, 84, 109</td>
</tr>
</tbody>
</table>

(continued)
rupture of membranes with either the NST or the BPP. Roughly 40% of third-trimester hydramnios cases diagnosed by ultrasonography have normal or near-normal amniotic fluid volume on subsequent assessments; outcomes in these cases are generally good. Persistent hydramnios is associated with poorer pregnancy outcomes, including fetal anomalies, maternal diabetes, and perinatal death; these pregnancies may benefit from antenatal surveillance, but there are few data to support specific methodologies.

Postterm Pregnancy

Postterm pregnancy is associated with increased fetal mortality and neonatal seizures, especially if growth restriction is present. The optimal gestational age at which to initiate testing has not been established. Some investigators have recommended 41 weeks or more. Because adverse pregnancy outcomes in...

Table 3. Maternal Risk Factors and Estimated Risk of Stillbirth and Reported Strategies for Antepartum Fetal Surveillance (continued)

<table>
<thead>
<tr>
<th>Condition</th>
<th>Prevalence (%)</th>
<th>Estimated Rate of Stillbirth</th>
<th>Odds Ratio</th>
<th>GA to Initiate Testing</th>
<th>Testing Mode and Schedule</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLE</td>
<td><1</td>
<td>40–150/1,000</td>
<td>6–20</td>
<td>26 wk</td>
<td>CST, BPP, or NST/wk</td>
<td>109, 123</td>
</tr>
<tr>
<td>Renal disease</td>
<td><1</td>
<td>15–200/1,000</td>
<td>2.2–30</td>
<td>30–32 wk</td>
<td>BPP 2x/wk</td>
<td>109, 124</td>
</tr>
<tr>
<td>Cholestasis of pregnancy</td>
<td><0.1</td>
<td>12–30/1,000</td>
<td>1.8–4.4</td>
<td>34 wk</td>
<td>MBPP/wk</td>
<td>30, 109</td>
</tr>
<tr>
<td>Advanced maternal age (reference less than 35 y)</td>
<td>35–39 y</td>
<td>15–18</td>
<td>11–14/1,000</td>
<td>1.8–2.2</td>
<td>ID</td>
<td>ID</td>
</tr>
<tr>
<td>Black women compared with white women</td>
<td>40</td>
<td>15–14/1,000</td>
<td>2.0–2.2</td>
<td>ID</td>
<td>ID</td>
<td>109</td>
</tr>
<tr>
<td>Maternal age less than 20 y</td>
<td>40</td>
<td>14–22/1,000</td>
<td>2.0–2.2</td>
<td>ID</td>
<td>ID</td>
<td>94</td>
</tr>
<tr>
<td>Nulliparity</td>
<td>1</td>
<td>12/1,000</td>
<td>2.6</td>
<td>ID</td>
<td>ID</td>
<td>127</td>
</tr>
<tr>
<td>Very high (10–14) or extremely high (15 or higher) parity</td>
<td>1</td>
<td>9/1,000</td>
<td>2.2–4.0</td>
<td>ID</td>
<td>ID</td>
<td>98, 128</td>
</tr>
<tr>
<td>Abnormal serum markers (first-trimester PAPP-A less than 5th percentile)</td>
<td>0.1–2</td>
<td>8–18/1,000</td>
<td>4.3–9.2</td>
<td>ID</td>
<td>ID</td>
<td>99</td>
</tr>
<tr>
<td>Abnormal second-trimester quad screen markers</td>
<td>BMI 25–29.9 kg/m²</td>
<td>21</td>
<td>12–15/1,000</td>
<td>1.9–2.7</td>
<td>ID</td>
<td>ID</td>
</tr>
<tr>
<td>BMI 30 kg/m² or higher</td>
<td>20</td>
<td>13–18/1,000</td>
<td>2.1–2.8</td>
<td>ID</td>
<td>ID</td>
<td>109</td>
</tr>
<tr>
<td>Low educational attainment (less than 12 y vs 12 y or more)</td>
<td>30</td>
<td>10–13/1,000</td>
<td>1.6–2.0</td>
<td>ID</td>
<td>ID</td>
<td>109</td>
</tr>
<tr>
<td>Smoking greater than 10 cigarettes/d</td>
<td>10–20</td>
<td>10–15/1,000</td>
<td>1.7–3.0</td>
<td>ID</td>
<td>ID</td>
<td>109</td>
</tr>
<tr>
<td>Thrombophilia</td>
<td>1–5</td>
<td>18–40/1,000</td>
<td>2.8–5.0</td>
<td>ID</td>
<td>ID</td>
<td>109</td>
</tr>
<tr>
<td>Thyroid disorders</td>
<td>0.2–2</td>
<td>12–20/1,000</td>
<td>2.2–3.0</td>
<td>ID</td>
<td>ID</td>
<td>109</td>
</tr>
</tbody>
</table>

GA, gestational age; HTN, hypertension; FGR, fetal growth restriction; CST, contraction stress test; NST, nonstress test; BPP, biophysical profile; AFI, amniotic fluid index; MBPP, modified biophysical profile; SLE, systemic lupus erythematosus; DM, diabetes mellitus; PIH, pregnancy-induced hypertension; UAD, umbilical artery Doppler; ID, insufficient data; PROM, premature rupture of membranes; PAPP-A, pregnancy-associated plasma protein A; BMI, body-mass index.
crease after 40 weeks of gestation, ACOG guidelines support initiating antenatal assessment after 40 weeks, although there are no randomized trial data to show that testing improves perinatal outcomes.74 Several investigators have evaluated the modified BPP for monitoring postterm pregnancy (Table 3).30,75

Oligohydramnios in postterm pregnancy is associated with poorer outcomes. However, recent studies have questioned the utility of amniotic fluid volume estimation as an independent predictor of adverse outcomes in prolonged pregnancies.76,77 Use of the AFI as opposed to the maximum vertical pocket may increase the diagnosis of oligohydramnios without affecting perinatal outcomes.78 Twice-weekly assessment of amniotic fluid volume is recommended commonly for patients at 41 weeks of gestation or more.74

Elevated risk in postterm pregnancy is related to impaired placental gas exchange; therefore, Doppler assessments of placental circulation would not be expected to be helpful.10 Correlation of umbilical artery Doppler results with outcome is poor79 and sensitivity is low. There is no clear role for Doppler velocimetry in monitoring postterm pregnancies given the existing evidence.

History of Prior Stillbirth

A history of previous stillbirth is associated with a 2-fold to 10-fold increased risk of fetal death in subsequent pregnancy, depending in part on the etiology of the previous loss.80 Previous stillbirth long has been considered an indication for antepartum testing81; however, there are no randomized trial data and scant other data on when to initiate testing or whether antepartum surveillance by any method is effective at reducing the risk of recurrent stillbirth (Table 3). Some authors recommend initiating testing at 34 weeks or at 1 week before the previous loss.80 Weeks et al82 followed 300 otherwise healthy patients for whom history of prior stillbirth was the only indication for antenatal testing with weekly CSTs or semiweekly modified BPPs. In this cohort, there was one perinatal death (recurrent stillbirth 3 days after a negative CST and less than 24 hours after a reactive NST), and 13.6% of patients were delivered for positive or equivocal fetal testing results. All three of the patients whose first abnormal test result occurred at less than 32 weeks of gestation were delivered at term without complications. Additionally, there was no association between gestational age at previous stillbirth and the incidence of an abnormal test or cesarean delivery for fetal distress. The authors concluded that it is reasonable to initiate antenatal testing for history of stillbirth at 32 weeks of gestation. Comparing the recurrent fetal death rate in this study (1/300 or 3.3/1,000) with that in another relatively low-risk population (19.0/1,000,83) suggests that serial CSTs or modified BPPs may reduce the risk of recurrent stillbirth, but this has not been tested rigorously.

Decreased Fetal Movement

By a number of definitions, decreased fetal movement has been associated with adverse pregnancy outcomes such as congenital malformations,84 fetal growth restriction,85 preterm delivery,86 and perinatal death.87 However, not all88 studies link decreased fetal movement to adverse outcome. Decreased fetal movement requires evaluation,18 but there are no randomized trials and few other data to support a specific protocol for such evaluation (Table 3). Most authors8 recommend an NST at a minimum. American College of Obstetricians and Gynecologists/American Academy of Pediatrics Guidelines for Prenatal Care recommend an NST and AFI for evaluation of decreased fetal movement.89 Patients in whom an NST and ultrasound/amniotic fluid volume assessment are normal do not appear to require further testing.90 There is no clear evidence that adding umbilical artery or uterine artery Doppler assessments in the evaluation of decreased fetal movement in otherwise low-risk women improves perinatal outcomes.91

Newer Indications For Antenatal Testing

The ACOG practice bulletin on antepartum fetal surveillance suggests that antepartum testing may be appropriate for any “pregnancies in which the risk of antepartum fetal demise is increased,” including the conditions described18 (Table 3). Recent research has highlighted increased stillbirth risk for a number of additional conditions, including advanced maternal age,92 nulliparity,93 grand multiparity,94 obesity,95 conception with assisted reproductive technologies,96 hereditary and acquired thrombophilias such as factor V Leiden mutation,97 and abnormalities in first-trimester and second-trimester serum screening results.98,99 Whether a program of antenatal testing in women with these risk factors can reduce the incidence of stillbirth is unknown.

BENEFITS AND COSTS OF ANTENATAL TESTING

The gaps in the evidence regarding the efficacy of antepartum testing in preventing fetal death or injury make it difficult to assess the large-scale benefits of antepartum testing in general. Limitations of the existing evidence also prevent a comprehensive un-
derstanding of the costs of antenatal fetal surveillance. Potential costs include the actual dollars spent on tests and their interpretation, opportunity costs of patients’ and practitioners’ time spent in testing, and maternal and neonatal morbidity (or even mortality), eg, from labor inductions, cesarean deliveries, or iatrogenic prematurity, especially given the chances for false-positive tests. Very little is known about the effects of antenatal testing on maternal mental states—does testing provoke anxiety or rather offer reassurance? How these potential costs balance against potential benefits is uncertain.

CHALLENGES AND OPPORTUNITIES

The existing literature on the ideal use of antenatal testing and its benefit in reducing fetal death or injury is characterized by a number of overarching limitations. Importantly, much of the existing evidence is observational, and recommendations often are based on expert opinion. There is a clear need for additional randomized trial data; however, conducting well-designed randomized trials could be challenging. For one thing, despite weaknesses in evidence, antepartum testing is an accepted and expected component of prenatal care in many cases, making it difficult or impossible to design definitive trials comparing outcomes among pregnancies assigned to testing compared with no testing. Furthermore, even among pregnancies at increased risk, stillbirth and CNS injury are rare outcomes, and multiple potential confounding factors must be taken into account; it is thus difficult to conduct adequately powered trials. In attempts to overcome this barrier, many investigators have assessed more common surrogate endpoints (eg, cesarean delivery for fetal distress or meconium staining), but it is not clear which, if any, are most appropriate. Thus, for many antenatal testing strategies, there are few data directly indicating that their use reduces rates of fetal death or long-term neurologic impairment. It is worth considering whether the development of alternate definitions of false-negative and false-positive tests would serve to advance research in the field.

To date, most studies on the predictive value of antenatal testing methods have been conducted in heterogeneous groups of “high-risk” pregnancies (Table 3). It may not be appropriate to generalize one testing methodology to all conditions. Rather, testing protocols should be specific to the underlying risk condition prompting the assessment. Effectiveness of antenatal fetal testing in preventing stillbirth may be improved by targeting specific testing modalities to specific pathophysiologic processes. Kontopoulos and Vintzileos report that condition-specific fetal testing in 12,766 high-risk pregnancies at their institution resulted in a fetal death rate of 1/3,191, a threefold decrease from rates where the same assessments were used without condition specificity. Persistent gaps in our understanding of fetal disease processes and their progression limit further condition-specific application and interpretation of tests.

Condition-specific testing cannot, however, fully address the scope of potentially preventable fetal death and injury. As many as 50% of late fetal deaths occur in women without identifiable risk conditions. It is especially difficult to design studies and strategies for using antenatal testing to prevent these unexpected losses. Some method of maternal assessment of fetal movement appears to be a promising candidate for a universal screening test, but it is not clear that this or any of the other existing methodologies can have an effect in these pregnancies at subclinical risk, at least not in the ways that they are currently applied.

For the most part, studies of antenatal testing have focused on stillbirth prevention; the body of research examining long-term outcomes among surviving neonates is substantially underdeveloped. Future work should adopt a wider view to investigate the role of antepartum testing in prevention of disability in addition to prevention of perinatal death. Such research must employ long-term, high-quality follow-up, must evaluate other composite short-term and long-term outcomes (eg, neurologic injury, neurodevelopmental outcomes), and also must account for environmental and external influences after delivery.

CONCLUSION: DEFINING A RESEARCH AGENDA

Priority areas for future research are highlighted in the box “Recommendations for Future Research.” For all areas of research, workshop participants stressed the need for well-designed randomized controlled trials whenever appropriate. For example, it would be both feasible and important to conduct trials comparing the effectiveness of different combinations of primary and secondary assessment techniques on improving perinatal outcomes.

Researchers should evaluate newer systems of test interpretation on a number of levels. For example, perhaps the binary classification of NST results is an oversimplification. The implications of antepartum testing results for individual patients may be improved if they are considered in combination with pretest odds and likelihood ratios. Determination of pretest odds may be based on multiple factors such as...
severity of underlying disease, socioeconomic status, previous obstetric history, obesity, and tobacco use.

Further attention to developing evidence-based testing intervals and appropriate ages to initiate test-

BOX: RECOMMENDATIONS FOR FUTURE RESEARCH

Epidemiology of stillbirth and cerebral palsy
Development of national active surveillance programs
Routine, thorough etiologic investigations after stillbirth
Emphasize long-term neurodevelopmental follow-up

Fetal/placental pathophysiology
Enhance knowledge of placental dysfunction
Observational studies of changes in fetal physiology and test results by specific disease processes
Understand possible subtypes of fetal growth restriction
Definitions and significance of amniotic fluid abnormalities

Fetal movement assessment
Improve discrimination between normal and abnormal fetal movement
Develop effective algorithm for fetal movement assessment
Identify role in universal screening or as adjunct assessment

Fetal testing technologies
Identify most appropriate method for primary surveillance and backup testing
Establish best testing intervals
Further research on ages at which to initiate testing
Best methodologies in the fetus less than 32 weeks of gestation
Benefits of matching testing methods to indication and specific pathophysiology
Development of risk profiles incorporating testing results and additional pregnancy exposures and characteristics
Evaluate combinations of assessments
Research and development of technologies for early identification of the fetus at risk for neurologic injury (continued)

Indications for antenatal testing
Role of antenatal surveillance in well-controlled diabetes
Utility of Doppler ultrasonography in management of preeclampsia
Use of customized growth percentiles for evaluation of fetal growth and implications for antenatal testing
Further study of testing in twins and higher-order multiples
Investigate new indications for testing: advanced maternal age, obesity, nulliparity, thrombophilia, assisted reproduction, tobacco use, previous poor pregnancy outcome

In summary, participants at the Eunice Kennedy Shriver National Institute of Child Health and Human Development workshop “Antenatal Testing: A Reevaluation” identified numerous gaps in the evidence guiding the clinical application of most antepartum assessments commonly in use today. Existing data are primarily observational and neglect some potentially important questions, such as the appropriate gestational age at which to initiate testing, the adaptations needed for assessment of fetuses at lower gestational ages, the optimal frequency of testing, and the targeting of technologies to underlying pathophysiology. Although there are challenges to designing and con-
ducting adequately powered studies of antenatal testing strategies, further research clearly is needed.

REFERENCES

17. Freeman RK, Anderson G, Dorchester W. A prospective multi-institutional study of antepartum fetal heart rate moni-

67. Vintzileos AM, Bors-Koefoed R, Pelegano JF, Campbell WA, Rodis JF, Nochimson DJ, et al. The use of fetal biophysical...

